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STABILITY OF A PLASMA ROTATING IN
CROSSED ELECTRICAL AND MAGNETIC FIELDS

V.V. Dolgopolov, V.L. Sizonenko, and K.N. Stepanov

Introduction /18*

Electrons and ions rotate with different angular velocities

in a plasma cylinder in longitudinal magnetic and radial electric

fields, owing to the presence of centrifugal forces. The relative

movement of electrons and ions may be the cause of formation of

various instabilitieslin such a plasma. In this case, both small-

scale longitudinal oscillations of the plasma, for which plasma

inhomogeneities are insignificant, and oscillations of the drift

wave type and channeled disturbances can be excited [1].

These instabilities lead to plasma turbulence and its heat-

ing. High-frequency turbulent noise in the plasma, the frequencies

of which considerably exceed the ion cyclotron frequency, were

discovered experimentally [2-5]. This instability also was studied

experimentally in works [6-8], in which excitation of powerful. ion

cyclotlron oscillations, accompanied by strong heating of the ion

component, were discovered and investigated, in addition. Turbulent

heating of the ion component and turbulent, high-frequency pulses

in the rotating.:plasma also were studied experimentally in works

[9-10]. Evidently, observed heating of ions in an ion magnetron

can be explained by the presence of a similar type of instability

[11].

The stability of a rotating plasma cylinder is investigated

in this work, and it is shown that, along with high-frequency

longitudinal oscillations in such a plasma, excitation of oscil-

lations, with frequencies and increments on the order of the ion

cyclotron frequency is possible.
. . . ... . . . . ...... . . . . ... .

*Numbers in the margin indicate pagination in the foireign text.



1. Short Wave Oscillations

In the equilibrium state, the distribution function of a-type

particles is determined from the equation

; foa += dfo0 e afoa f(1.1)
O'dr r dOa ma ( 1 ) )

where EO(r) is the voltage of the radial electric field, wH =

= e HO/mac is the gyrofrequency of a-type particles, $ and $

are the azimuthal angles in normal space and in velocity space,

respectively, and vr = vL x cos(D - v), v sin(D - $).

If the Larmor radius of the particles is considerably less /19

than the radius of the plasma, the first term in Eq. (1.1) can

be disregarded and v /r can be replaced by the angular velocity

of rotation wm. Then, with wa independent of r, we obtain the

following expression from (1.1):

o = no 2 ) exp 2T [v,2(v -+ ( a 4 2 l (1-2).T.

In this case, the value of the rotational velocity us = rwa is

determined from the equilibrium conditions

I u e. 1 IP 2
Eo + u,(', ( 1.3 )mr MU mn Or (

where pa = noT.

Let us examine the case of short wave oscillations, when

plasma inhomogeneities can be disregarded. (For this, the

longitudinal wave number k 1 must not be very small.) ,We shall

look for a solution for a field disturbance E = -Vp and the
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distribution function f -= fo0g , in the form

'Lg,-iexpfi[kzl+ mw kp (1.4) 

where m is a whole number. Then, disregarding values .connected

with the density gradient, we obtain the following equation for

ga

(1.5)
Oga

i (k D vz- ( + mo. + k.lv cos 0) ga- (oHa + 2e°) - = R.a(0),
where

v =% -raw, =v x;sin O', v, =v 
.

cos O', 0= 0'-- , k, =kIcos

kA =-= k sin, R. (8) = - i a (k , cos + k).
r a.

If the replacement of variables vL' - vl is made in Eq. (1.5),

' - _ .p-- , O-m-i m -, (OHa+ + 2-a Ha (l.6,

it coincides,'iwith the equation for the oscillator portion of the

distribution function in a quiescent plasma.

Integrating Eq. (1.5) and substituting the expression obtained

for )ifa = f0g~ in the Poisson equation, we obtain the following

dispersion equation:

I + w 6e () = 0,

where (1.7)

~~~~n=_ i/ co~(1.8)
k. = k2 + k, /

-o mco,- n (ot + 2oA) -
Zn. 1/2k v A,, (X)=e(X),

I VTa
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w(z) z(n +_. V; edt). 2/20

Dispersion equation (1.7), of course, has the same form as

for a uniform plasma with a transverse current [12, 13], and it

is only necessary to carry out replacements (1.6). The value

us = rwa plays the part of transverse velocity, and the value k~ =

= m/t, the part of azimuthal component of the wave vector. There-

fore, in those cases when effects connected with the extremity of

the Larmor radius do not play a part, instabilities in the rotating

plasma are similar to instabilities in a uniform plasma with a

transverse current, and the expressions presented in works [12-15]

can be used for the frequencies and growth increments of the

oscillations. However, the frequencies and growth increments

of oscillations and instability threshold in a rotating plasma

can differ significantly from those in a uniform plasma, for

oscillations for which the extremities of the Larmor radius are

significant; this refers especially to the case of resonance

WHo -2w.

Let us investigate the dispersion equation in a series of

limiting cases. Here, we will assume everywhere that the oscil-

lation frequencies are considerably less than the electron gyro-

frequencies and, moreover, that IWHel >> k lIjvTe. In this case,

it can be assumed that

&e= k2 [ + i V1/ZoW (Zoe) Ao(Le)l (1.9)

a) Let us examine hydrodynamic instabilities, for which

pa << 1 and IZnal >> 1. In this case, Eq. (1.7) takes the form

2 (0~2 cos 2 Q 2 (
pe pa = 0,l+ ( 2 M 0~2

'f +2 (0--m%)' (X-m ( -- ((oHa + 2%) | (1 . 10 ).
Er~



where cos2 0 = k1(k2 + k

If pi ~ WHi' Eq. (1.10)., with cos20 0 me/mi, has the

(1.11)

Re o -- mo Im o -m I - O I,) h,
where

% @ P = %, ',min (p,i, 1/ I |.H I)-

The frequency and growth increment of these oscillations is

considerably larger than the ion cyclotron frequency, so that

the ions can be considered unmagnetized. In this case, dispersion

equation (1.10) can be used and, with pi > 1, it is only necessary

to disregard (wHi + 2 wi) incomparison with (w - mowi) 2

We note that, in the presence of ions of two or more kinds,

moving relative to one another with velocity u = r 1il - wi21'

excitation of ion-ionicluster instabilities is possible, with

frequencies on the order of

Re I n Im ,-- m (, - 2) ( ~P cost 8<

in which electrons do not take part in these oscillations.

If cos2 0 >> me/m
i

the term dependent on ions in (1.10). is '/21

small in comparison with terms dependent on electrons, only if

w is not close to. mw
i
. Assuming w = mwi + Aw, where

Im(we - Wi) I >> .IA1 >> Hi' we obtain

5



Ao = i cOps
0),2 COS 2 0)2

V nz2 (0) - WJ)2 WH~e

Under resonant conditions,

l/ p Cos I m (o.-- Oi)l = oCOS

He

the growth increment reaches a maximum value:

A@ =Et I + i"2 (i0,0'pCosO)' ¥ 3

24/3 /2e11'

In the case of very low density (pi < Hi) scillations

propagating at an, angle 0 to the magnetic field, which is not

close to i/2, also can be unstable. In this case, dispersion

equation (1.10) should be replaced by the equation

<>e2 COS2
_ W2a cos_ (.) a sin2 E 0]

i- m)2 a J - moi) (_ m-1 - (@Ha + 2a])2 (1.12)

Its solution is close to mwi:

(1.13)

o = moi + A (I Aw I ) fmoe- oi)I,
where

o -- cos E A@d = Cit 

(1.14)
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if m(we - .i) is nott ::close to: w pecosO, and

= 1 + i VO P C'o 3
24/3 ~ cos ( (me ) (1.15)

if m(we - i) = wpecosO. In obtaining these expressions, we

assume that IAwl << IHi+:'2wi I.

In addition, this equation has still another solution, close

tow= mw. + (t t 2w ). One of them corresponds to unstable
i H i, .,d.n: . ..

oscillations; if mw i + wHi + 2,wi{ w pecosO + mwe. In this case,

Imw = y, where

- o,2 sin" 8 p, cos8 
4 _ 2o+ ,

(1.16)

We note that conditions for applicability of the hydro- /22

dynamic approximation for unmagnetized oscillations with frequen-

cies (1.11)

IZoec |m |(ck uvi) | 1, Izl* I | 2kl 1k»| |m ( (1.17)

are satisfied, if the relative azimuthal velocity of the particles

u is considerably greater than the thermal velocity of the ions

and the velocity of sound.

b) We will consider the condition u >> vTi to be satisfied.

Let us demonstrate that, in this case, there is a high-frequency

kinetic instability, with frequency and growth increment (1.11),

in a two-component plasma, with hot ions and cold electrons.

Since the ions are unmagnetized for high-frequency oscilla-

tions,

7



Ei 2 ziw(Z (1.18)

Considering condition (1.17) to be satisfied for electrons, we can

assume

(He (O -mc )
2 (1.19)

Substituting (1.18) and (1.19) in Eq. (1.7), and assuming

A = mw i + i¥ , where y << Im(we - Wi)l, we obtain

2~xC -is k
2
t7
2

2 cos
2
OS~02

,= (%_, 1 - (o ) 2 (1.20)
o

where x = -kv . The function f(x) decreases monotonically
Ti

from unity to zero, with increase in x from 0 to infinity.

Therefore, dispersion equation (1.20) has a solution x X 1, if

the right part of (1.20) is on the order of (but less than) unity.

In this case, for y X kvTi, we obtain an estimate of (1.11).

From the condition that the right part of (1.20) is on the order

of unity, we find that characteristic values of cosO are equal,

in order of magnitude, to

os 0 u X me <1, k - k.
k-_ (1.21)

The conditions for applicability of the estimates obtained (

(IZoel >> 1) are satisfied if T
i

>> Te.

Dispersion equation (1.20) is not applicable under resonance

conditions, when the right part of Eq. (1.20) returns to zero

8



I m (o, - (oi) = o-= -.

I + -M (1.22)

In this case, using (1.18) and (1.19), we find that dispersion

equation (1.7) takes on the form

'Iz - Zo + [I + i l/zw (zi)] = ,1
- (1.23)

where

m3 (o- - %)s[ O COS2 0
°. I/8kv,,Op, cos2 8 Lm2 (,-_ ,i) 2 P.3 o -- , I

(i)He8k3v3,lope cos2 COS

From here we find that Re zi " Im zi X 1, at z0o1 < 1 and ni'-,1,

i.e.

Re o -- mo, -y - kvTI
. ,(opo, COS 9)1/3

( he )
(1.24)

Thus, under resonance conditions, the growth increment for

the kinetic instability (y X' kvTi) is on the order of the maximum

growth increment of A. hydrodynamic oscillations.

For applicability of expressions (1.23) and (1.24), it is
2 2

necessary that the conditions pe = k2 pe < 1 and IZOeI > l..be

satisfied. These inequalities are satisfied if

9



c) In a strongly nonisothermal plasma,. with hot electrons

and cold ions CTe > Ti), with u > v
s

= T7ei, the development

of high-frequency (y > WHi) oscillations of the ionic acoustic

type is possible in a tw -component plasma. In this case,

Izil >> 1 ands = p. Taking expression (1.9) into
account for 6Se, we obtain from (1.7)

o= ma1 ± / _ (1.25)

1 V+ .-- [ + i Tze.w (z.) Ao (e)
where

m (w-- -)

k 2kvo 

With Jz0el ' 1, kpe > 1 and Wpe - kvTe, in accordance with

(1.25), in order of magnitude, we have

.Y' VicTI '%, A I eo" I I½ (, 1- I | (1.26)

The conditions for applicability of expressions (1.25) and (1.26),

:lzIl >> 1, are satisfied if Te >> Ti.

d) In an isothermal plasma (Te X T
i
) of high density

(Wpe >? ]WHel), kinetic instabilities, with growth increment

y >> wHi' also exist at u >> vTi. The ions can be considered

unmagnetized for such oscillations, and expression (1.18) can be

used for 46i, and expression (1.9) for 6ee . In this case,

IZOel X Izil X 1 for kinetic instabilities, so that electrons and

ions with thermal velocities are resonant. The growth increments

of these oscillations are determined in order of magnitude by

relations (1.11).

10



Let us proceed now to study of oscillations, frequencies and

growth increments, which are comparable to ion cyclotron

frequencies.

e) Let us begin with examination of hydrodynamic instabil- /24

ities in a low-density plasma. At wpi < WNi' dispersion equation

(1.10) has the solution

Re o - mw co y m (- 0) (hi '

.~--- ~(1.27)

f) Let us now examine oscillations with a finite ion

Larmor radius (pi > 1), Assuming that IZnil > 1, and using

expression (1.9) for 6Ee, at IZOel << 1 and pe << 1, we present

dispersion equation (1.7) in the form

+2 T, 2 (. - mi)2 A. (pL)
I + k0) - 171 2 r

ihoe T _-i A (1.28)
- V-jJ/Z~(e -- ) A--1, n (AI) e W

n=--co

Discarding small terms in the right part of this equation,

we find the natural frequencies w = () (Pi' m), corresponding

to longitudinal ion cyclotron oscillations. Graphs of these

frequencies vs. pi, at wi = 0 have been presented in works

116, 171]. We can use the--results of L16, 17] for determination
of the frequencies w(j)(i, m.), taking substitutions (1.6)

into account.

Considering the smallness of the right side of (1.28), it

is easy to find the growth increment of the cyclotron oscillations

11



RZ Oe -T+ V/ AZOli A. (I,) e (1 2 9

A, ([i) n ((Hi + 2(,) ( - m)-- noHi - 2no) -
2

where

MO()I, ,(X/)_ m% -- n (onHi + 2%o)
Zoe , Zni =V/k ' v V 2k or,

The boundary of the instability region can be determined,

assuming y = 0. Using the results of [16], we find I the

critical value of the relative velocities of electrons and ions,

above which excitation of cyclotron oscillations is possible,

uCr << VTi. However, it should be remembered that applicability

of the expressions obtained above for the frequencies and growth

increments of the high-frequency oscillations are limited by the

conditions y >> IwHi + 2wil. At Ti >> Te, the maximum growth
increment of the electron-acoustic oscillations

xU )

becomesvery small at u << vTi, and the inequality y >> IwHi + 2wi]

can be destroyed. However, under resonance conditions

Hi X -2w., this inequality will be satisfied, even at small u,

so that the excitation threshold of electron-acoustical oscilla-

tions actually will be very low.

2. Stability of a Nonhomogeneous Rotating Plasma /

Let us proceed now to investigations of disturbances, for

which inhomogeneities of the plasma prove to be significant. In

12



this case, we restrict our.selves to examinat'ion of oscillations,

for which the presence of thermal movement of electrons is

negligible, so that the hydrodynamic approximation can be used

to describe them. (Instabilities of a rotating plasma, for

description of which a kinetic analysis is necessary, were

investigated at kH = 0 in a number of works [18, 19 and others].

Linearizing the equations of motion and continuity equations

for electrons and ions, we present the Poisson equation in the

form [1]

I d red fY) (ke3,-t k2E
1

+ k- d 2)- 0, (2.1)
· dr dr dr

where

8(1- - m±i)2 - (a ) + 20))2
a

(o% + 2o() O2

( ) [(= - M - ()H +

Satisfaction of the inequalities Be •< 1, IZnel >> 1, and

Izil |>> lis necessary for applicability of the hydrodynamic

approximation in analysis of high-frequency oscillations

(y >> w~i). In addition to that, in the case of a low-density

plasma, satisfaction of the inequalities pi < < 1 and Iznil >> 1

is necessary,

Let us examine the solution of Eq. (2.1) in several cases.

13



a) If the transverse wavelength is considerably less than

the characteristic dimensions of the plasma inhomogeneity,

solution of (2.1) can be sought by the Wenzel-Kramers-Brouillon

method. The, substituting expression (1:4) for ~ in (2.1), we

obtain, in the local approximation, the dispersion equation

1 de, k0,
81 + e3 COSa E + 88 cos2 0 q- k2 dr - .de+e3 cos2e+k-dr cos k-- (2.2)

It follows from Eq. (2.2) that, for the unstable oscillations

investigated above, approximation of a uniform plasma is applicable

only at quite large values of kll :

'ku e83 >jks dIdr (2.3)

In this case, Eq. (2.2) coincides with Eq. (1.12).

In a dense plasma (wpi >> WHi + 2wi`), Eq. (2.2), as in the

case of a uniform plasma, has a solution, with IRew - mwil and y

considerably greater than wHi. In this case, di'sregarding the

contribution of ions to £2 and E3, we obtain [20]

2 2 cos2 2

i , -Mo) mti) 2 - - mow) 2 klt ( - m%')) = ,

where /26

d.
Xn dr P'

By satisfying the inequality opposite in sign to (2.3),

kn<I IOH el IXnkIj| (2.5)

14



this equation has a solution [20]

(2.6)Re-- mo= keu = . -( 2 6 (.)

¥ = [,Xu U \A- 1/2< .
Oku(" )i <<kvu (2.7)

In the case of a low-density plasma (wpi < wHi), by satis-

fying an inequality opposite to (2.3), Eq. (2.4) has the form

I Pm =0.ePl XnC i

(O - mi) 2 -_ (eor + 20i))2 kti ( - m) (2.8)

The growth increment reaches a maximum value

¥(=% IXn 2I 1 (2.9)

by satisfying the resonance condition

Reo = mo, l [eo¢ + (oi + 2o)21'1/2 = mO,. (2.10)

In this case, the inequality opposite to (2.3) has the form (2.5),

where it should be assumed y = ym

b) If the rotating plasma is uniform in the region r < a

and its density decreases sharply to zero at r X a, Eq. (2.1)

has a solution of the surface wave type, localized close to the

sharp boundary r = a. Let us obtain the dispersion equation for

surface waves.

15



The solution of Eq.' (2.1) has the form

. = AI, (kr) (r < a),

P=BKm(k Ur) (r> a),

where k 2= 3 Im('x) is a Bessel function from the imaginary
II -'

argument and Km(x-) is a MacDonald function. Using the continuity

conditions 9(r) at r = a and the second boundary condition

dr I dr (2.11)

which is not difficult to obtain, integrating Eq. (2.1) over a

narrow region close to r = a, we obtain the following dispersion /27

equation:

ks ll (ka) - k 2al, (ka) d (kp a) Im (ka)( a 2 Km (k U a)'
(2.12)

Let us note first of all that, for axially symmetric oscil-

lations (m = 0), Eq. (2.1) coincides with the dispersion equation

for symmetric waves in a plasma cylinder, in the case of a

quiescent plasma and, naturally, it does not have unstable

solutions.

Let us examine dispersion equation (2.12), for the case of

short waves (ka >> 1, kea >> 1). In this case, we find from

(2.12) that

2k 2~ k - kpe + + k = 0. (2.13)

16



This equation, if substitutions (1.6) are taken into account,

coincides with the dispersion equation for surface waves on a

flat boundary of a magnetoactive plasma-vacuum.

In a dense plasma (Wpi >> wiH),Eq. (2.13) has a solution

with Re w > Hi and ¥ Hi' At kll= 0, it takes the form

2±+ £o ( m) + signm - . (2.14)O)~e (o - mw5 )" oHI (o - mE)

The solution of this equation in the high-frequency region

sign mco2
() = mfo Pe 2

l He(2+2t aw).(2.15)

corresponds to stable oscillations. One of two solutions of

Eq. (2.14) in the low frequency region

Re o = meo)

is unstable, if u = ue - u > 0, in which

e (2.16)

0),Hi 2 +(OH2 (2.16)

Expression (2.16) is applicable, in order of magnitude and

at k[] M 0, if

2 a2k,u| 1'/

17
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